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ABSTRACT

This paper describes a systolic array for the computation of n-dimensional (n-D) convolutions for any

positive integer n. Systolic systems usually achieve high performance by allowing computations to be

pipelincd over a large array of processing elements. To achieve even higher performance, the systolic array of

this paper utilizes a second level of pipelining by allowing the processing elements themselves to be pipelined

to an arbitrary degree. Moreover. it is shown that as far as orders of magnitude are concerned, the total

amount of memory required by the systolic array is no more than that needed by any convolution device that

reads in each input data item only once. Thus if only schemes that use the minimum-possible I/O are

considered, the systolic array is not only high performance, but also optimal in terms of the amount of

required memory.

\
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1. Introduction
Multi-dimensional convolutions constitute some of the most compute-intcnsivc tasks in signal and image

processing. For example, a 2-D convolution using a general 4x4 kernel requires 16 multiplications and 15

additions to generate each pixel in the output image. If the dimensionality is higher or the kernel is larger,

even more arithmetic operations would be required. Though computationally demanding, convolution is

nevertheless a highly regular computation. By exploiting the regularity inherent to the computation, cost-

effective, high performance systolic arrays, that are capable of using many systolic cells in parallel, have been

proposed or built to perform multi-dimensional convolutions [1, 2, 3, 4, 5, 8].

Previously proposed systems, however, suffer from two drawbacks. Firstly, they do not take advantages of

the possibility that arithmetic units could themselves be pipelined. Secondly, they cannot be used to perform

convolutions of arbitrary dimensionality-they can for example perform only 1-D or 2-D convolutions, but

not both.

Section 2 of this paper describes a systolic array for 1-D convolution which utilizes pipelined arithmetic

units. The systolic array is extended and optimized in Section 3 to handle multi-dimensional convolutions.

By adjustinrg the memory size of each cell of the systolic array, the array can be used for convolutions of any

dimensionality. It is shown in Section 4 that the total amount of memory required by the systolic array is

optimal in the sense that the same amount of memory is required by any scheme that reads in each input pixel

only once. The final section contains some concluding remarks.

2. 1-Dimensional Convolution

2.1. Problem Definition

Given a vector of signals X= {x},i = 1,2... n, and another vector of weights W= {w},j= 1,2 .

with k< n, convolving signal X with "kernel" W is to compute
k-i

Ys=  .Wi+I*Xi #,

for s = 1, 2. n - k + 1. Imagine that the vector indices increase from left to right. The first result. Yi, is

obtained by aligning the leftmost element of W with the leftmost element of X, then computing the inner

product of Wand the section of X that W overlaps. To produce the second result, y, the kernel slides one

position rightward and the inner product calculation is again performed on the overlap. The last result.

Y-k+1, is obtained when rightmost element of Wis aligned with the rightmost element of X.



2

2.2. Systolic Array for 1-0 Convolution

Rather than viewing the kernel as sliding over the signal, as described above, one can consider the kernel as

being fixed in space and the signal as sliding over the kernel. This view suggests a linearly-connected array for

performing convolution, in which each cell holds a single kernel element throughout the computation, and

the signal passes through the array, say, from left to right. An array operating in this fashion is shown in

Figure 2-1. In each cell a signal clement is held by a register, and the multiplier may be pipelincd to an

arbitrary degree. Note that moving the signal from right to left causes the kernel indices to increase right to

left.

t-7 W4 X4  + W3 X 3  + W2 X2  + WIX I YI

1-8: W4 X5  + W3X4  + W2 X + WX 2  - Y2

W4 MULTIPLIER W W2  W I

W4 W4 W W3 W3 W3  W2 WWWIiW

LTIPLIX 1 IV) X5 2

Figure 2-1: Linear-connected array for 1-D convolution.

In the figure we see that all the terms of a particular result y appear at the multiplier outputs at the same

instant. They can be summed up by using a pipelined tree-adder (see, e.g., 171). However, the intercon-

nections needed to implement the adder tree are not local when the number of terms is large. This difficulty

is avoided in the systolic approach where additions required in summing the terms of a result are apportioned

to all cells uniformly and performed in different cell cycles (2, 31.

We consider the particular systolic design-design W2 in the [3--where each cell produces its term of a

result nne cycle earlier than the cell to its right produces its term for the same result. The skew can be

accomplished by replacing in each cell the single-stage register, which transfers the signal stream, with a

two-stage shift register. For the general case when the adder in each cell is a multi-stage pipeline unit, the

number of stages of the shift register should be one greater than that of the adder. The remainder of this

paper assumes the systolic array structure shown in Figure 2-2 with the following parameters for its cells:

, ... .. . . . . _" - . " " ,,.O-
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" At = the number of pipeline stages of the multiplier unit,

" A =thc number of pipeline stages of the adder unit, and

" R = the number of stages of the shift register, with R = A + 1.

The stage times for the multiplier, adder and shift register are assumed to be the same.

(a) 1 C2LL

Yin 1 2SYout

(b) ~

MULTIPLIER

X: in 13 R X out

SHIFT REGISTER

Figure 2-2: (a) Systolic 1-D convolution array and (b) its cell definition.

Figure 2-3 shows snapshots of an execution of a 1-D convolution on a 4-cell systolic array with M = 4, A =

2. and R = 3. In the figure, x, enters the array at time 0, and P, stands for a partial result of y. We see that

, |4
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results y,'s are output from the rightmost cell at a rate of one result per stage time of the multiplier (or adder).

There is no broadcast or unbounded fan-in in the system- each cell communicates only with its immediate

neighbors. This allows indefinite expansion of the array which, for electrical and timing reasons, would be

impossible if global communication paths existed.

3. Multi-Dimensional Convolution

3.1. Problem Definition

Multi-dimensional convolution is a straightforward generalization of 1-D convolution, as illustrated by the

definition of 2-D convolution below.

Given a 2-D signal (or image) X = {xy}, i = 1, 2 ..., m, j = 1, 2...., n, and a 2-D kernel W= {wj},i= 1 2,

.k, j = 1, 2,...,p, with k,< m and p< n, convolving X with W is to compute
k-i p-i

Yn= E Ewi+lj+"Xi+rj+s '

1=0 j=o

for r= 1,2-. m- k + 1 and s = 1,2... n-p + 1. Imagine that the indices increase rightward and

downward. Then the first result, y,,, is generated by placing the kernel over the image such that w11 covers x11,

multiplying the corresponding elements of Wand X, and then summing these products. The kernel slides

one position to the right for the generation of the second result. y2. After the last element of the first output

row is computed, the kernel moves one position downward and back to the left edge of the image. As the

kernel slides rightward, the second row of output is produced. Repeat this step for all rows until the last result

is produced when wkp covers x,,.

3.2. Converting n-D Convolution into 1 -D Convolution

The problem of computing an n-D convolution can be converted into that of computing a 1-D convolution.

and therefore the n-D convolution can be performed on a systolic array for I-D convolutions. For example,

the 2-D convolution defined above can be viewed as a 1-D convolution with the signal and kernel defined as

follows. The signal is

X = [-X. ,X2 ..... XMd,,

where xj. = x1j, xi, .. x j; that is, the signal is the concatenation of the rows of the given 2-0 signal (or

image) and has a total length of inn. The kernel is (u!v stands for the value v repeated u times):

W= [w.,(n - p)!Ow 2. .. (n-p)!0. wkJ,

where w.= w. wp; that is, the kernel is the concatenation of the rows of the given 2-D kernel, with a

. ,
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vector of (n-p) zero elements inserted between each consecutive pair of rows. The length of the kernel is

?herefore 1(k - 1) + p. To illustrate the definition, consider an cxample where the image is 5 rows by 4

columns (m= S,n = 4), and the kernel is 3 rows by 2 columns (k = 3 .p = 2). The l-D signal is formed from

the 2-D image as follows (an element in the image is specified by its 2-D row-column index):

x = f11,12,13.14,21,22,23,24,31,32,33.34,41.42,43,44,51,52,53,54,

and the I-D kernel is formed from the 2-D kernel as follows:

; = [11.12,0,0,21,22.0.0.31,321.

Figure 3-1 shows snapshots of several kernel positions, each corresponding to the generation of some result,

from both the 1-D and 2-D viewpoints. In the figure. kernel indices are shown on the top of signal indices.

Configuration for generating the first resulL Yi,. is shown in Figure 3-1(a). The kernel moves one position to

the right to produce the second result. Y12. as shown in Figure 3-1(b). After the last result of the first row, y3,

is produced, the kernel slides one position to the right. At this point an invalid result is generated, which must

be ignored. This situation is shown in Figure 3-1(c). Next, the first element of the second row is produced, as

shown in Figure 3-1(d). The kernel continues to slide to the right until the final result, j,,. is generated

(Figure 3-1(e)). Although in the general case p- 1 invalid results are generated for each row of output (except

the last), the fraction of total results which are invalid is very small because p< n.

The above method of converting a 2-D problem into a 1-D problem can be generalized to that of convert-

ing an n-D problem into a 1-D problem. To illustrate the idea, consider a 3-D signal with 3 planes by 3 rows

by 3 columns, and a 3-D kernel with 2 planes by 2 rows by 2 columns. The 1-D signal is formed as follows

(using the 3-D plane-row-column index):

X = 1111,112.113.121,122,123,131,132,133,211,21221',221,222,223.231,232233,311,312,313,

321,322,323,331,332,3331,

and the -D kernel is formed as follows:

W= (111,112,0.121,122,0,0,0,0,211,212,0,221,222).

The position of the kernel for the generation of the first result is shown in Figure 3-2. The 1-D signal is

formed by concatenating the rows of the first plane of the 3-D signal, followed by the rows of the second

plane. etc. The 1-D kernel is formed by concatenating the rows of the first plane of the 3-D kernel, with zero

vectors in between, followed by a larger vector of zeros sufficient to "cover" the remainder-of the first signal

plane, then followed by the rows of the second plane of the 3-D kernel with zero vectors in between, etc. One

can check that a total of 14 results are generated, of which 8 are valid. As the size of the 3-D signal increases,

the fraction of results which are invalid becomes very small, as in the 2-D case.

A1
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11 12 13 14

21 22
21 22 23 24

,1 32
2D): 3 2 5354 first result

41 42 43 44

51 52 53 54

11 12 0 0 21 22 0 0 31 32
ID: 11 12 13 14 21 22 23 24 31 32 33 j4 41 42 43 44 51 52 53 54

11 12
11 12 13 14

21 22
21 22 23 24

31 32
2D-: 31 32 33 34 second result

41 42 43 44

51 52 53 54

11 12 0 0 21 22 0 0 51 32
ID: 11 12 13 14 21 22 23 24 31 52 33 34 41 42 43 44 51 52 53 54

Figure 31: Snapshots of a 2-D convolution computation from both l-D and 2-D viewpoints.
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12 21
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31 32
41 42 43 44

51 52 53 54
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21 22
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ID: 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 51 52 53 54

Figure 3-1 Cont.
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kernel kernel
plane I plane 2

III ilk 211 212

Ill 112 I. 211 212 213 311 312 313

121 122 221 222

121 122 123 221 222 223 321 322 323

1.41 132 1 231 232 233 331 332 33.3

signal plane I signal plane 2 signal plane 3

Figure 3-2: Generation of the first result ofa 3-D convolution.

3.3. "Optimized" Systolic Array for Multi-Dimensional Convolution

From the preceding discussion, we see that when an n-D convolution is converted into a l-D convolution, a

kerncl containing a large number of zero elements may be introduced. If the systolic array of Section 2.2 is

applied to perform the 1-D convolution directly, then a large number of cells would be needed in the array,

and cells with zero weights .would perform no useful work. We show here that a kernel containing a large

number of zeros can be accommodated on a small array, for which the number of stages of the shift register in

each individual cells is adjustable.

Consider a cell containing a zero kernel element. From Figure 2-2, we see that the only effects of that cell

are to delay the y stream by A cycles and the x stream by R = A + 1 cycles. Therefore if this cell is replaced

with a cell that just introducos zero cycle delay for the y stream (a direct path) and a single cycle delay for the

x stream, the same result stream would be generated, although each result would appear A cycles earlier than

before. This degenerate cell may in turn be absorbed into the cell to the left by increasing the number of shift

register stages of that cell by one, to A + 2. From these observations, we note that the systolic array needs

only q cells, where q is the number of non-zero elements in the kernel: these non-zero elements are loaded

into consecutive cells of the array. For i =1, 2 ... , q - 1, let Zi be the number of zero kernel elements

between the kernel elements stored in cell i and cell i + 1, and R, the numbcr of stages of the shift register in

cell i. The shift registers are configured such that

Rj= A + 1 + Z.
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As an example. if .4 = 2 and I I= 10,0,5.9.0,61 only 4 cells are needed, mth weight 6 stored in cell 1. 9 in ccll

2, 5 in cell 3, and 3 in cell 4. and with [R,.R,.R] = 14.3,51. A series of snapshots of a 2-1) con'wlution

computation on this ssstolic array are show in Figure 3-3.

If A + 1 + Z, exceeds the physical capacity of the shift registcr of cell i. the problem can still be solved by

using dummy cells. For example a dummy cell i', having a Lcro as its kerncl element, can be introduced

between cell i and cell i + 1, such that R, + Rj. = 2A + I + Zr

fhe "'cell-saving" technique described in this section is useful for 1-D convolutions deried from n-D

convolutions, because in this case I-D kernels contain large numbers of zero elements. The following

theorem summarizes the properties of the systolic array that is capable of solving the 2-D convolution

problem considered in Sections 3.1 and 3.2.

Thcorem 1: The convolution of an mxn image with a kxp kernel (k _p) can be performed on a
linearly-connected systolic array of kp cells, where cells ip, i = 1.2 ..., k- 1, each have a shift
register of A + 1 + n- p stages, and the rest of the cells each have a shift register of A + I stages.
(A total of O(kn) memory is thus needed for all the shift registers.)

A theorem corresponding to the case when p < k can be obtained in a similar way.

4. Memory Requirement

The systolic convolution array described above relies on the availability long shift registers in many cells. Is

this an excessive use of memory? This section shows that as far as orders of magnitude are concerned, the

total amount of memory required by the systolic array is no more than that needed by any convolution device

that reads in each input pixel only once. Thus if we restrict ourselves to schemes that use the minimum-

possible I/O, the systolic array is not only high performance, but also optimal in terms of the amount of

required memory.

To be precise, we model in Figure 4-1 the I/O behavier of a special-purpose convolution device. The

convolution device retrieves input pixels from some external memory and performs computations on them.

Computed results are stored back either to the same external memory as shown in the figure or to another

memory. The external memory is typically a disk. rather than the fast memory of a computer, in order to

store large images. In this case, I/O with the external memory is relatively slow; we assume that it is necessary

that each input pixel originally stored in the external memory be brought out to the convolution device only

once so that I/0 will not be a bottleneck. To accomplish this, some form of memory assigned specifically to

the convolution device, called the device memory here, is needed, since each input pixel is used multiple

times to compute multiple output pixels. Thle device memory may be a line buffer capable of holding a

m i
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number of image lines (see, e.g.. [41), or a memory distributed over cells of the device as in the case of the

s~stolic convolution array described in the preceding section. Theorcm 3 below establishes a lower bound on

the size of the device memory, i.e., the number of pixel values it must hold, for any 2-D convolution device.

The proof can be generalized to the n-D case for any n in a straightforward way.

Mlemory

._ Convolution

Device

Figure 4-I: I/O model of a convolution device.

We make an important (and quite reasonable) assumption that the convolution device treats elements in

the image and in the kernel as indeterminates. Thus the device never looks into values of the elements, nor

possible relations among them, in order to decide what to do next. In other Words, the design or the program

of the device is data independent.

The proof of the theorem is based on an information-theoretic argument and uses the the following well

known result [6]:

Lemma 2: To bisect an mxn mesh-connected graph at least c.n edges have to be removed,
where c > 0 is a constant independent of n.

Bisecting a graph means partitioning the graph into two subgraphs, each containing about half of the nodes of

the original graph. Here we assume that the number of nodes in each subgraph is within the range of(1/2)mn

,2kn.

Theorem 3: Consider convolving an mx n image with a k x p kernel on a convolution device,

where nt_ m, k : p, and m, n are arbitrarily large. If the device is allowed to read in each input

pixel only once. then it requires a memory of size at least proportional to kn.

Proof: Assume that there is a moment when the number of pixels that has been output by the

convolution device is within the range (112)mn ± kn. (It will be shown at the end of the proof that

this assumption is without loss of generality.) At this moment, let U be the set of pixel locations in

the input image whose values have been input from the external memory to the device memory,
and V the set of pixel locations in the output image whose values have been output from the

convolution device. Consider the m x n mesh-connected graph. Notice that V and its complement

define a bisection of the graph. Fori = 1,2. k - 1, define V ) to be the union of Vand the set
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of those nodes which are in the complement of 1'and reachable from some node in V by a path of
length no more than i. 11hen by Lemma 2 we have

I V 1f - I VI >_cn,

and

I VU+l)I - IV0 1>cn,

for i = 1,2.....k -2. where I VI and I 1''l are the cardinalities of V and VW, respectively.
Since by the definition of the convolution problem J'O - 1) C U. we have

IU1 - I VI ' (k - 1)cn.

Consider now the input pixels whose pixel locations are in U - K Note that these input pixels
are needed to compute output pixels at corresponding locations, and that they cannot be
regenerated from future inputs from the external memory. [hus they (or some equivalent amount

of information to specify them) must be stored in the device memory. Since the input pixels are
assumed to be indeterminates, a memory of size at least I U1 - I VI, or (k - 1)cn, is needed to
specify these pixel values at this moment.

Suppose that the convolution device generates output pixels in large bursts so that no such
moment exists when the number of pixels that have been output is within the range (1/2)mn ± kn.
Then there must be a moment when a set of at least 2kn output pixels are generated in a single
burst. For producing these output pixels in a single burst all the input pixels at the corresponding
pixel locations (or equivalent amount of information) must be stored in the device memory im-
mediately before the burst.

By Theorem 3 we conclude that the O(kn) memory needed by the systolic array of Theorem 1 for the 2-D

convolution is the minimum-possible, if we assume that each input pixel is allowed to be read in from the

external memory only once.

5. Concluding Remarks
The systolic array of this paper can execute n-D convolutions with only as many cells as there are non-zero

elements of the kernel. Note that zeros in the kernel arise not only from conversion of n-D problems to 1-D

problems, but also directly from applications. The shift registers in the cells can probably be most economi-

cally implemented using RAM chips, since the size and cost of these chips are decreasing at a very rapid rate,

and are likely to continue to do so. *

The cells of the array may be considered as the individual segments of a pipeline. In addition, the adder

and multiplier of each cell may be pipelined to any degree. This two-level pipelining provides high computa-

+~C~ fillip,....
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don rates and is suitable for complex arithmetic units, such as floating point units, which are typically

implemented as muli-stagc pipelines.

The approach presented for multi-dimensional convolutions has the advantage that the signal is accessed in

"natural" row (or column) order, which corresponds to the way the signal is stored in the linear memory of

the host. This allows the use of direct memory access (DMA) rather than requiring addresses to be generated

with software, which should enhance throughput significantly. The same remarks apply to the generation of

the results.

Finally, if the number of cells in the systolic array is insufficient for a particular problem, the problem can

be decompoed by passing the signal through the array multiple times, each time with a successive segment of

the kcrnel. For the sccond and successive passes, the results of the previous pass are entered into the adder of

the leftmost cell (the y input), rather than a constant zero scream. This assumes that the signal can be accessed

several times (i.e.. the processor is not being used in a real time, flow-through mode), and that a path exists

between the output and the y input of the array.
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